
Analyzing Survey Data 
On Constructing Interval Scales Using Data Resulting from Categorical 

Judgements 

This paper is from course material by Professor Glenn Lindsay of the Naval 
Postgraduate School. It provides a methodology for analyzing survey data, without 
assuming arbitrary numerical values for the responses to the questions (such as 
satisfactory = 1, good = 2, excellent = 3, etc.). This method is also valuable for analysis 
of "fuzzy" performance indicators which are based upon worker survey results.  

Categorical Judgments: The Method of Successive Intervals  

A frequently used means of obtaining ratings from judges [survey responders] is that of 
categorical judgment, wherein judges assign instances to ranked categories. For example, 
corporate bonds may be rated as A, AA, and so on; student opinion forms ask the student 
to rate an instructor as poor, fair, average, excellent, or outstanding; pollsters often ask 
people to check one of a set of categories described as strongly agree, agree, no opinion, 
disagree, and strongly disagree. When an instructor assigns a student's letter grades, he 
may be viewed as making a categorical judgement in that the possible grades are the 
categories and the students are the instances. Other examples of ranked categories are 
found in such diverse applications as restaurant sanitation ratings, personnel appraisals, 
and motion picture ratings (G, PG, R, NC-17). Usually, there are descriptors associated 
with each category which serve to help the judge with his rating task. 

The method described in this paper is a scaling method which uses categorical ratings 
provided by judges, and constructs an interval scale which includes not only the instances 
but also the bounds between the categories. Thus descriptive benchmarks appear on the 
final scale. Typically, five categories are used. No assumptions are made about the 
relative interval sizes for the categories. The categories are understood to be a mutually 
exclusive set of successive intervals which collectively exhaust the property continuum. 

Data Assembly  

A direct way to aggregate categorical ratings of instances (survey questions) by judges is 
through a frequency array, with a row for each of the n instances and a column for each 
of the m categories. Columns in this array should be arranged in ascending order of 
category value, so that the category representing the least amount of the property is 
Column 1, and the category representing the greatest amount of the property is Column 
m. It is not necessary for a judge to rate all instances (questions). 

Working with the frequency array, we may cumulate values in each row rightward and 
divide by the row total to achieve a cumulative frequency array. Since the values in the 
right hand column of the cumulative frequency array will always be 1.0, this column may 
be omitted for computational purposes, yielding a cumulative frequency array with n 
rows, and m minus 1 columns.  



In the example given below, 80 judges were asked to rate four political candidates in 
terms of their "potential effectiveness as President of the USA". The categories were 
Very Ineffective, Ineffective, Marginal, Effective, and Very Effective. Raw frequency 
data are:  
Candidate Very Ineffective Ineffective Marginal Effective Very Effective 
A 10 20 27 21 2 
B 4 30 35 11 0 
C 20 43 15 2 0 
D 3 2 34 30 11 

From this raw frequency array, the cumulative relative frequency array may be 
constructed: 

Candidate Very Ineffective Ineffective Marginal Effective
A 0.1250 0.3750 0.7125 0.9750 
B 0.0500 0.4250 0.8625 1.0000 
C 0.2500 0.7825 0.9750 1.0000 
D 0.0375 0.0625 0.4875 0.8625 

These results say, for example, that 71.25% of judges found A no better than marginal. 
Another way of looking at these values would view the columns as upper bounds on 
adjacent categories, and thus we would say the 71.25% of judges placed Candidate A 
below the upper bound of the marginal category. That is the interpretation we will use in 
the work to come. Note that category "Effective" will have an upper bound but the 
highest category, "Very Effective", will not. Similarly, the lowest category will have no 
lower bound. 

Theory  

We assume that a judge's "feelings" about the scale value of an instance (or question) i is 
a normally distributed random variable with mean S i and standard deviation sigma i. We 
also assume that judges view the continuum of values for instances as being broken into 
successive intervals called categories, and that a judge's feelings about a category's upper 
bound is a normally distributed random variable so that for category j, the upper bound 
would be normally distributed with mean b j and standard deviation v j. 

We want, for each instance i, an estimate of its mean S i. To obtain these estimates, we 
will also have to obtain estimates of the category upper bounds (b j) since the raw data 
will be sorted by category. 

Since a judge's feelings about instance values and about category upper bounds are 
normally distributed random variables, the judge's feelings about the distance between an 
instance value and a category bound will also be a normally distributed random variable 



with mean b j minus S i, and variance sigma j squared plus v j squared. It is not 
unreasonable to assume that the value bound "feelings" are independent random 
variables, so that the correlation coefficient between all i,j pairs is zero. We also assume 
that all category bounds have the same standard deviation, so that for all category bounds, 
the variance equals a constant (c). 

Thus a judge's feelings about the distance from bound j to instance i can be viewed as a 
normally distributed random variable with mean b j minus S i and variance sigma i 
squared plus c. It follows that the probability that an instance i is rated below bound j is 
equal to the probability that z is less than (b j minus S i) divided by the square root of 
(sigma i squared plus c), where z is normally distributed with mean 0 and variance 1. 
From the frequency data from judges we obtain estimates of all of these probabilities for 
each i,j pair, and then retrieve the z values from a normal distribution table. We now have 
n times (m-1) equations to solve. 

Editor's note: The original paper derives the solution to these simultaneous equations.  

For this method to work, we must have a complete array of values (every question must 
have at least one response in every category). The best method to deal with this is to 
consolidate two columns together (as is done in the example at the end of this paper). 

Step by Step Procedure for Obtaining Scale Values with a Complete Array  

An EXCEL spreadsheet which accomplishes the operations below is available. It uses the 
data in the example in this paper. Please contact Steve Prevette or call at 509-373-9371. 

1. Arrange the raw frequency data in a table where the rows are instances 
(questions) and the columns the categories. Columns should be in rank order, with 
Column 1 representing the least favorable category, etc.  

2. Compute relative cumulative frequencies for each row, and record these in a new 
table. The last column of this new table will consist of 1's and may be omitted.  

3. Treating these values as leftward areas under a Normal (0,1) curve, go to a table 
of the normal distribution and find the z values for these areas. Record these in a 
new n by (m-1) table. This is the z ij array for the computations which follow.  

4. For each row i in the z ij array, compute the row average, z bar i.  
5. For each column j in the z ij array, compute the column average. Call these 

column averages b j, and note that b j is the value of the upper bound of category j 
on our scale.  

6. Compute a grand average of all the values in the z ij array. This is readily done by 
simply averaging the column averages. Call the grand average B bar.  

7. Compute B = sum from j = 1 to m-1 of (b j minus B bar) squared.  
8. For each row, compute Ai = sum from j = 1 to m-1 of (z ij minus z bar i) squared.  
9. For each row, compute the square root of (B divided by Ai). This is an estimate of 

the standard deviation of the response for the question, the square root of sigma i 
squared plus c.  



10. Finally, for each row (question) compute S i = b bar minus z bar i times the 
square root of (B divided by Ai).  

The values of S i are the scale values of the instances (questions), and they are on the 
same interval scale as the category bounds b j. We now have the desired scale, and may 
perform any linear transformation to move the scale where we want it. Remember to use 
the same transformation to move both instance values and the category bounds. 

Example  

We will continue the example started at the beginning of this paper. Because candidates 
B and C had no responses in the Very Effective column, we must pool the Effective and 
Very Effective categories together. Steps 1 and 2 have already been accomplished. Steps 
3, 4, 5, and 6 are reflected in the table below: 

Candidate Potential 
Effectiveness 

z ij Very Ineffective Ineffective Marginal Row 
Total 

Row Average z 
bar i 

A 1 -1.15 -0.32 0.56 -0.91 - 0.303 
B 2 -1.64 -0.19 1.09 -0.74 - 0.247 
C 3 - 0.67 0.78 1.96 2.07 0.690 
D 4 -1.78 -1.53 -0.03 - 3.34 -1.113 
Column Totals -5.24 -1.26 3.58 - 2.92 = Grand Total 
Column 
Averages: b j -1.310 - 0.315 0.895 -0.243 = Grand 

Average: b bar 
 
Note: In the formulae below, the notation **2 represents "Squared", and SQRT 
represents "Square Root".  

Step 7. B = (-1.310 - (-0.243)) **2 + (-0.315 - (-0.243)) **2 + (0.895 - (- 0.243)) **2 = 
2.439 

Step 8. A1 = (-1.15 - (-0.303)) **2 + (-0.32 - (-0.303)) **2 + (0.56 - (- 0.303)) **2 = 
1.462 
Similarly, A2 = 3.731, A3 = 3.471, and A4 = 1.792 

Step 9. SQRT( B / A1 ) = 1.292, SQRT( B / A2 ) = 0.809, SQRT( B / A3 ) = 0.838, 
SQRT( B / A4 ) = 1.167 

Step 10. S1 = -0.243 - (-0.303) (1.292) = 0.148 
S2 = -0.243 - (-0.247) (0.809) = -0.043 
S3 = -0.243 - (-0.690) (0.838) = -0.821 
S4 = -0.243 - (-1.113) (1.167) = 1.055 



Also, Upper Bound on the Very Ineffective Category is -1.310 
Upper Bound on the Ineffective Category is -0.315 
Upper Bound on the Marginal Category is 0.895 

Final Results of the Example  

Category Candidate Score 
Very Ineffective  Less than -1.31 
Ineffective  -1.31 to -0.315 
 Candidate C -0.821 
Marginal  -0.315 to 0.895 
 Candidate B -0.043 
 Candidate A 0.148 
Effective and Very Effective  greater than 0.895
 Candidate D 1.055  

Graphical Representation of Example Results: 

 

Incomplete Zij Arrays  

Zij array entries corresponding to Pij > 0.98 and Pij < 0.02 should be omitted to avoid 
undue influence by a small number of judges. A problem also occurs when the response 
array is incomplete. There must be at least one response by at least one judge in each of 
the categories for all of the candidates for the response array to be complete.  



Because of the variety of situations that can occur, it is probably best not to attempt to 
provide here specific instructions on how to cope with an incomplete Zij array. Three 
tactics are suggested below.  

1. One may delete those rows with missing Zij values to obtain a smaller but 
complete Zij array, and apply the method given in this paper. This means, of 
course, that instances represented by those deleted rows will not be scaled 
directly. One either discards these instances, or "pieces" them onto the scale in 
some way that will hopefully be defendable (but will seldom be altogether 
satisfactory).  

2. One may pool extreme categories to obtain a Zij array void of missing values. For 
example, if Column 1 has missing Zij values and Column 2 is complete, we 
combine Categories 1 and 2 into a single category, and use the Zij values of 
Column 2. As another example, if the last column (column m-1) has missing Zij 
values and the next to last column is complete, we combine these last two 
categories together. This method was used in the example above where Categories 
Effective and Very Effective were combined together.  

3. A third approach is to break the Zij array down into smaller arrays, applying the 
previously described tactics so that one has several complete, but smaller Zij 
arrays. These arrays are scaled separately. If one has been clever in dividing the 
original array, the resulting set of scales will have two overlapping points in 
common so that linear transformations will place all instances and bounds on the 
same scale. 

Conclusion  

This methodology allows the transformation of categorical judgements in a survey to an 
interval scale. This method is useful for the "fuzzy" performance measure methods using 
survey results being applied at certain Department of Energy sites. This is a robust 
statistical method that does not rely upon arbitrarily assigning numerical values to the 
judgement categories.  
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